МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ
Декан
химического факультета
В.Н. Семенов
<u>19.04.2024</u>
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.ДВ.02.02 Основы технологии полупроводниковых материалов Код и наименование дисциплины в соответствии с Учебным планом
1. Код и наименование направления подготовки/специальности: 04.03.01
2. Профиль подготовки/специализация: <u>Химия</u>
3. Квалификация (степень) выпускника: бакалавр
4. Форма обучения: очная
5. Кафедра, отвечающая за реализацию дисциплины: кафедра общей и неорганической химии
6. Составители программы: <u>к.х.н., доцент Косяков Андрей</u> Викторович
7. Рекомендована: НМС химического факультета протокол № 4 от 11.04.2024
8. Учебный год: <u>2025-2026</u> Семестр(-ы): <u>4</u>

- **9. Цели и задачи учебной дисциплины:** изучение основ физики твердого тела, физики и химии полупроводников с элементами технологии полупроводников; изучение начал полупроводникового материаловедения.
- **10. Место учебной дисциплины в структуре ООП:** Блок 1.Дисциплины. Часть, формируемая участниками образовательных отношений. Дисциплины по выбору Б1.В.ДВ.2.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ПК - 1	Способен проводить	ПК -	Обеспечивает	Знать: - источники научно-
	сбор,	1.1	сбор научной,	технической информации,
	систематизацию		технической и	журналы отечественной и
	и критический		патентной	международной научной
	анализ научной,		информации,	периодики, основы поиска
	технической и		необходимой	патентной информации.
	патентной		для решения	Уметь: - осуществлять поиск
	информации,		исследовательс	научно-технической
	необходимой для		ких задач	информации с
	решения	ПК -	Составляет	использованием ресурсов
	исследовательских	1.2	аналитический	сети Интернет, баз данных;
	задач химической		обзор	оформлять отчет о
	направленности		собранной	результатах поиска
	_		научной,	информации.
			технической и	Владеть: - приемами поиска
			патентной	научно-технической
			информации по	информации и методами
			тематике	составления отчетов о
			исследователь-	результатах поиска.
			ского проекта	
ПК - 2	Способен	ПК -	Составляет	Знать: - методы обработки и
	планировать работу	2.1	общий план	анализа первичного
	и выбирать		исследования и	экспериментального
	адекватные методы		детальные	материала по синтезу и
	решения научно-		планы	исследованию дисперсных
	исследовательских		отдельных	систем с заданным набором
	задач в области		стадий	реологических свойств; -
	аналитической,	ПК -	Выбирает	методы исследования
	физической,	2.2	экспериментал	физико-химических
	неорганической,		ьны е и	процессов, протекающих на
	органической и		расчетно-	границах раздела фаз.
	полимерной химии		теоретические	Уметь: - планировать
			методы	эксперимент на основе
			решения	анализа литературных
			поставленной	данных; - анализировать и
			задачи, исходя	обобщать результаты
			из имеющихся	эксперимента,
			материальных	формулировать выводы.

	и временных	Владеть: - навыками
	ресурсов	использования
ПК -	Выбирает	экспериментальных и
2.3	технические	расчетно-теоретических
	средства и	методов исследования
	методы	структурно механических
	испытаний (из	свойств дисперсных систем и
	набора	материалов.
	имеющихся)	
	для решения	
	поставленных	
	задач НИОКР	
ПК -	Готовит	
2.4	объекты	
	исследования	

12. Объем дисциплины в зачетных единицах/час — 3/108 Форма промежуточной аттестации зачет

13. Трудоемкость по видам учебной работы

Вид учебной работы			Трудоемкость		
		Всего	По семестрам		
			6		
Аудиторные занятия		36	36		
	лекции	18	18		
в том числе:	практические	18	18		
	лабораторные				
Самостоятельная рабо	та	72	72		
в том числе: курсовая работа (проект)					
Форма промежуточной аттестации					
(экзамен –час.)					
И	гого:	108	108		

13.1. Содержание дисциплины

Разделы дисциплин и виды занятий

№	Раздел дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайнкурса, ЭУМК
		1. Лекции	
1.	Общая	Твердое тело как конденсированное	
1.	характеристик	состояние вещества. Задачи и	https://edu.vsu.ru/course/view.p
	а твердого	разделы физики твердого тела.	hp?id=2174
	тела.	Элементы кристаллографии.	
	Элементы	Решетка Браве. Точечная и	
	кристаллограф	пространственная симметрия	

	ии	кристаллов.	
1. 2.	Химическая связь в полупроводни ках. Основы зонной теории твердого тела.	Основные феноменологические отличия металлов и полупроводников. Общая характеристика полупроводниковых материалов. Типы полупроводников. Химическая связь в полупроводниках.	https://edu.vsu.ru/course/view.p hp?id=2174
1. 3.	Статистика носителей заряда в полупроводни ках	Статистика электронов в полупроводниках. Фазовое пространство. Понятие функции распределения и плотности состояний. Статистика Больцмана. Статистика Ферми-Дирака. Уровень Ферми.	https://edu.vsu.ru/course/view.p hp?id=2174
1. 4.	Поверхностны е и контактные свойства полупроводни ков	Поверхностные свойства полупроводников. Изменение уровня Ферми на поверхности полупроводника. Структура металл – полупроводник. Эффект выпрямления тока. Р-п переход.	https://edu.vsu.ru/course/view.p hp?id=2174
1. 5.	Зонная теория твердого тела.	Зонная структура кристаллов. Свободный электрон, уравнение Шредингера для кристалла. Оператор трансляции. Теорема Блоха. Адиабатическое приближение. Волновой вектор. https://edu.vsu.ru/course/view.php?id= 2174Обратная решетка. Зоны Бриллюэна. Квазиимпульс. Эффективная масса электрона	https://edu.vsu.ru/course/view.p hp?id=2174
		2. Практические занятия занят	 ИЯ
2. 1.	Электрофизич еские свойства полу-проводников и металлов	Некоторые сведения из теории электричества. Электронная теория проводимости. Подвижность носителей. Уравнение для электропроводности. Общий характер температурной зависимости электропроводности металлов и полупроводников (собственная проводимость). Механизмы рассеяния носителей. Температурная зависимость подвижности. Гальваномагнитные явления.	https://edu.vsu.ru/course/view.p hp?id=2174
2. 2.	Оптика полупроводни ков	Оптические свойства полупроводников. Спектр поглощения п/п. Край фундаментальной полосы. Оптическая ширина запрещенной зоны. Центры окраски. Примесное	https://edu.vsu.ru/course/view.php?id=2174

		поглощение в п/п. Экситоны.	
2. 3.	Элементарные , бинарные и многокомпоне нтные полупроводни ки	Элементарные полупроводники. Бинарные полупроводники. Общая характеристика. Неоднородные, аморфные, органические полупроводники.	https://edu.vsu.ru/course/view.p hp?id=2174
2. 4.	Фазовые равновесия в полупроводни ковых системах	Типы фазовых диаграмм интерметаллических и п/п систем.	https://edu.vsu.ru/course/view.p hp?id=2174
2. 5.	Методы получения и очистки полупроводни ковых материалов	Синтез и очистка п/п материалов. Требования к п/п материалам. Направленная кристаллизация. Методы роста кристаллов Бриджмена и Чохральского. Теория зонной плавки.	https://edu.vsu.ru/course/view.p hp?id=2174

13.2. Темы (разделы) дисциплины и виды занятий

№			Виды занят	тий (часов)	
Π/	Наименование раздела дисциплины	Лекции	Практические	Самостоятельная	Всего
П	T	,	работы	работа	
	Твердое тело как				
1	конденсированное состояние			4	4
	вещества. Задачи и разделы				
	физики твердого тела.				
	Элементы кристаллографии.				
2	Решетка Браве. Точечная и		2	6	8
	пространственная симметрия		_		
	кристаллов				
	Основные феноменологические				
	отличия металлов и				
	полупроводников. Общая				
3	характеристика	2		4	6
	полупроводниковых				
	материалов. Типы				
	полупроводников.				
4	Химическая связь в		2	4	6
	полупроводниках		_	·	
	Некоторые сведения из теории				
	электричества.				
5	Электростатическое поле,			4	4
	теорема Гаусса. Потенциал,				
	уравнение Пуассона				
	Некоторые сведения из теории				
	электричества. Ток, плотность				
6	тока. Уравнение неразрывности			4	4
	Точечный закон Ома.				
	Вольтамперная характеристика.				
7	Электронная теория		2	4	6

	проводимости. Подвижность				
	носителей. Уравнение для				
	электропроводности. Общий характер температурной				
	зависимости				
	электропроводности металлов и				
	полупроводников (собственная				
8	проводимость). Механизмы		2	4	8
	рассеяния носителей.				
	Температурная зависимость				
	подвижности.				
9	Гальваномагнитные явления.			2	4
9	Эффект Холла.			2	4
	Термоэлектрические явления в				
10	полупроводниках. Эффект			2	4
	Пельтье, термо-эдс.				
	Статистика электронов в				
11	полупроводниках. Фазовое	4		2	6
	пространство.				
	Понятие функции				
12	распределения и плотности		2	2	6
	состояний. Статистика				
	Больцмана.				
13	Статистика Ферми-Дирака. Уровень Ферми.	2		2	6
	Уровень Ферми в собственных				
	полупроводниках. Зависимость				
14	уровня ферми от температуры и			2	4
	эффективных масс носителей				
	заряда.				
	Уровень Ферми в примесных				
	полупроводниках. Зависимость				
15	уровня ферми от температуры,		2	2	6
13	концентрации примесей и		2	2	0
	эффективных масс носителей				
	заряда.				
	Поверхностные свойства				
16	полупроводников. Изменение	2		2	6
	уровня Ферми на поверхности				
	полупроводника. Структура металл –				
	структура металл – полупроводник. Эффект				
17	выпрямления тока.		2	2	6
	выпримления тока.				
18	Р-п переход.			2	4
	Зонная структура кристаллов.				
	Свободный электрон, уравнение				
19	Шредингера для кристалла.	2		2	6
19	Оператор трансляции. Теорема			<u> </u>	6
	Блоха. Адиабатическое				
	приближение.				
20	Волновой вектор. Обратная		2	2	6

	рошотка Зош Гриннома				
	решетка. Зоны Бриллюэна.				
	Квазиимпульс. Эффективная				
	масса электрона				
	Оптические свойства				
	полупроводников. Спектр				
21	поглощения п/п. Край	2			6
21	фундаментальной полосы.	2			O
	Оптическая ширина				
	запрещенной зоны				
22	Центры окраски. Примесное		2	2	4
22	поглощение в п/п. Экситоны.		2	2	4
23	Элементарные полупроводники.			2	2
24	Бинарные полупроводники.			2	4
24	Общая характеристика.			2	4
	Неоднородные, аморфные,	2		2	(
	органические полупроводники.	2		2	6
	Типы фазовых диаграмм				
25	интерметаллических и п/п	2		2	6
	систем				
	Синтез и очистка п/п				
26	материалов. Требования к п/п			2	4
	материалам				
	Направленная кристаллизация.				
27	Методы роста кристаллов			2	4
27	Бриджмена и Чохральского.			2	4
	Теория зонной плавки.				
	Итого:	18	18	72	108

14. Методические указания для обучающихся по освоению дисциплины:

Максимально возможный охват рекомендуемой литературы при подготовке к семинарским занятиям, докладам и при самостоятельной работе. Использование методических разработок кафедры. При возникновении вопросов по дисциплине контакт с преподавателем, через систему https://edu.vsu.ru.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины:

а) основная литература:

№ п/п	Источник
1.	Шалимова К. В. Физика полупроводников / К.В. Шалимова. – СПб.: Лань, 2010 .— 390 с.
	Шалимова К. В. Физика полупроводников / К.В. Шалимова. – Москва: Лань, 2010 .—
2.	390 с.// Издательство "Лань": электронно-библиотечная система. —
	URL: https://e.lanbook.com

б) дополнительная литература:

№ п/п	Источник
2	Бонч-Бруевич В. Л. Физика полупроводников / В. Л. Бонч-Бруевич, С. Г. Калашников. –
3.	М.: Наука, 1990. – 688 с.
4.	Киреев П. С. Физика полупроводников / П. С. Киреев. – М. : Высш. школа, 1969. – 592 с.
5	Китель Ч. Введение в физику твердого тела / Ч. Китель; пер. с англ. – М.: Физматгиз,
5.	1962. – 696 c.
6	Угай Я. А. Введение в химию полупроводников / Я. А. Угай. – М. : Высш. шк., 1975. –
6.	302 c.
7.	Ормонт Б. Ф. Введение в физическую химию и кристаллохимию полупроводников / Б.

	Ф. Ормонт. – М. : Высш. шк., 1973. – 656 с.
8.	Соединения переменного состава / Под ред. Б. Ф. Ормонта. – Л. : Химия, 1969. – 520 с.
	Левин А. А. Введение в квантовую химию твердого тела. Химическая связь и структура
9.	энергетических зон в тетраэдрических полупроводниках / А. А. Левин. – М. : Химия,
	1974. – 240 c.

- в). Информационные электронно-образовательные ресурсы
- 1. https://lib.vsu.ru/

следующих разделов дисциплины:

16. Перечень учебно-методического обеспечения для самостоятельной работы

Учебно-методический комплекс дисциплины на сайте https://edu.vsu.ru

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины используются классические образовательные технологии без замены аудиторных занятий (лекций и практических занятий) на ДОТ.

При возможных ограничениях по посещению аудиторных занятий могут быть использованы элементы электронного обучения (ЭО) и дистанционные образовательные технологии (ДОТ) в части освоения лекционного материала, проведения самостоятельной работы обучающихся по дисциплине, позволяющие обеспечивать опосредованное взаимодействие (на расстоянии) преподавателей и обучающихся, включая инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru), проведение вебинаров, видеоконференций, взаимодействие в соцсетях, посредством электронной почты, мессенджеров. Основные типы лекций – вводные лекции (в начале изучения дисциплины) и информационные лекции с визуализацией (мультимедийные презентации). Проведение промежуточной аттестации осуществляется в форме устного собеседования по КИМ. Самостоятельная работа по всем разделам предполагает выполнение обязательных письменных домашних заданий.

18. Материально-техническое обеспечение дисциплины: мультимедийная техника для чтения лекций с использованием электронных презентаций. Высокотемпературный измерительный комплекс RLG 4270/GP, Печь электрическая муфельная ЭП-1200-2, Термометр контактный TK-5,11, двухканальный без зондов, Мультиметр Keithley 2700 (ауд. 359, 535).

19. Оценочные средства для проведения текущей и промежуточной аттестаций. Порядок оценки освоения обучающимися учебного материала определяется содержанием

№ п/п	Наименование раздела дисциплины (модуля)	Компете нция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Общая характеристика твердого тела. Элементы кристаллографии		ПК - 1.1 ПК - 1.2 ПК - 2.1 ПК - 2.2 ПК - 3.1 ПК - 3.2	Домашние задания Практико- ориентированные задания
2.	Химическая связь в полупроводниках. Основы зонной теории твердого тела.			Домашние задания Практико- ориентированные задания

№ п/п	Наименование раздела дисциплины (модуля)	Компете нция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
3	Статистика носителей заряда в полупроводниках			Домашние задания Практико- ориентированные задания	
4	Поверхностные и контактные свойства полупроводников			Домашние задания Практико- ориентированные задания	
5	Зонная теория твердого тела.	ПК–1		Домашние задания Практико- ориентированные задания	
6	Электрофизические свойства полупроводников и металлов	ПК-2 ПК-3		Домашние задания Практико- ориентированные задания	
7	Оптика полупроводников			Домашние задания Практико- ориентированные задания	
8	Элементарные, бинарные и многокомпонентные полупроводники			Домашние задания Практико- ориентированные задания	
9	Фазовые равновесия в полупроводниковых системах			Домашние задания Практико- ориентированные задания	
10	Методы получения и очистки полупроводниковых материалов			Домашние задания Практико- ориентированные задания	
Промежуточная аттестация форма контроля - зачет				Перечень вопросов КИМ	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций. Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме: устный опрос (индивидуальный опрос); выполнение письменных домашних и практикоориентированных заданий, выполнение тестовых заданий. Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования. Контрольно-измерительные промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний, и практическое задание, позволяющее оценить степень сформированности умений и навыков. При оценивании используются качественные шкалы оценок. Критерии оценивания приведены в п. 20.2.

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: практико-ориентированные задания, домашние задания, тестовые задания, устный опрос. Вопросы для домашнего задания формулируются на практическом занятии. На следующем практическом занятии студенты представляют решение домашнего задания, занятие начинается с обсуждения вариантов решения. Устные опросы и тестирования проводятся на практическом занятии, о чем преподаватель заранее сообщает обучающимся.

Комплект тестовых заданий, который может быть использован для проведения диагностической работы.

Закрытые вопросы.

- 1. Энергии, необходимые для образования электронов проводимости в германии $E_1 = 1,12\cdot 10^{-19}$ Дж, в кремнии $E_2 = 1,76\cdot 10^{-19}$ Дж. В каком из этих полупроводников при данной температуре будет большая концентрация собственных электронов проводимости.
- (Ответ: В германии, так как для образования электронов проводимости у него требуется меньшая энергия.)
- 2. Какого типа будет проводимость германия, если к нему добавить примесь фосфора? (Ответ: электронная.)
- 3. Какого типа будет проводимость германия, если к нему добавить примесь цинка (2-х вал.)?

(Ответ: дырочная.)

- 4. При уменьшении температуры удельная электрическая проводимость полупроводников (нелегированных):
- а) уменьшается
- б) увеличивается
- в) остается без изменений
- г) сначала увеличивается, потом уменьшается
- 5. Полупроводниковый диод служит для:
- а) увеличения напряжения или тока
- б) преобразования переменного тока в постоянный
- в) управления внешними устройствами
- г) преобразования постоянного тока в переменный
- 6. Фотопроводимость-это:
- а) проводимость, вызванная действием примеси
- б) проводимость, вызванная действием температуры
- в) проводимость, вызванная действием света
- г) проводимость, вызванная действием тока
- 7. Кроме биполярных транзисторов бывают:
- а) луговые транзисторы
- б) полевые транзисторы
- в) литиевые транзисторы
- г) литий-ионные транзисторы
- 8. Полупроводниковые приборы, электрическое сопротивление которых изменяется под действием светового потока:
- а) фототиристор
- б) фототранзистор
- в) фотодиод
- г) фоторезистор

- 9. Какой полупроводник называется примесным?
- а) смесь нескольких различных полупроводников
- б) сплав кремния и германия
- в) полупроводник, содержащий в небольшой концентрации примесь с валентностью, отличной от валентности основного вещества
- г) полупроводник, содержащий в небольшой концентрации примесь с валентностью, равной валентности основного вещества
- 10. Диод, предназначенный для преобразования переменного тока в постоянный называется:
- а) плоскостной диод
- б) выпрямительный диод
- в) туннельный диод
- г) импульсный диод
- 11. Полупроводниковый прибор, назначением которого является усиление мощности электрических сигналов:
- а) биполярный транзистор
- б) диод
- в) полевой транзистор
- г) тиристор
- 12. К халькогенам относятся:
- a) Zn, Cd, Be
- б) V, Sb, Bi
- в) S. Se. Te
- г) W, Se, Cr
- 13. Окрашенные минеральные или органические вещества, обладающие полупроводниковыми свойствами, которые не растворяются в связующем:
- а) молекулярные кристаллы
- б) металлоорганические комплексы
- в) молекулярные комплексы
- г) пигменты
- 14. Какие из перечисленных материалов относятся к полупроводниковым материалам?
- а) серебро, пары ртути, раствор H₂SO₄
- б) алюминий, раствор сахара, плазма
- в) германий, кремний, фосфид галлия
- г) германий, полистирол, серебро
- 15. Какой из группы не существует у органических полупроводниковых материалов?
- а) полярные
- б) полимерные полупроводники
- в) молекулярные кристаллы
- г) пигменты
- 16. Распределение электроновпо энергии в металле подчиняется статистике
- а) Максвелла-Больцмана
- б) Ферми-Дирака
- в) Бозе-Эйнштейна
- г) ни одной из перечисленных
- 17. К неосновным носителям заряда в полупроводниках относят?
- а) Электроны проводимости
- б) Дырки в валентной зоне
- в) Экситоны при низких температурах
- г) носители заряда, имеющие наименьшую концентрацию
- 18. К какому типу полупроводниковых материалов относиться арсенид галия (GaAs):

- а) сложный полупроводник типа $\mathbf{A}_{_{-}}^{\mathrm{III}}\mathbf{B}^{\mathrm{V}}$
- б) сложный полупроводник типа $A^{II}B^{VI}$ в) сложный полупроводник типа $A^{IV}B^{VI}$
- г) сложный полупроводник типа ${\rm A_2^VB_3^{VI}}$
- 19. Для выпрямления переменного тока применяют:
- а) диоды
- б) терморезисторы
- в) транзисторы
- г) тиристоры
- 20. Процесс контролируемого введения в полупроводник необходимых примесей называется?
- а) легированием
- б) поляризацией
- в) адгезией
- г) аллотропией

Открытые вопросы

1. Эффектом Холла называется появление поперечной разности потенциалов	В
проводнике, по которому течет ток, и который помещен во внешнее поле	
Вставьте пропущенное слово.	
Ответ: магнитное	
2. Минимальное расстояние между дном зоны проводимости и потолком валентной зоны	
называют шириной зоны.	
Вставьте пропущенное слово.	
Ответ: запрещенной	
3. Квазичастица, которую можно представить как квант энергии согласованног	O
колебательного движения атомов твёрдого те-ла, называется	
Вставьте пропущенное слово.	
Ответ: фононом (фонон)	
4. Преобладающим типом носителей заряда в кремнии, лигированном фосфором являютс	R
Вставьте пропущенное слово.	
Ответ: электроны	
5. Преобладающим типом химической связи в таких полупроводниках как кремний,	
германий, $A^{III}B^V$ является связь	
Вставьте пропущенное слово.	
Ответ: ковалентная	
6. Для обозначения плоскостей и направлений кристалла используются так называемь	
кристаллографические индексы Как правило, обозначение направления ил	
плоскости выглядит, как три взаимно простых целых числа, записанные в круглы	IX
скобках: (111), (101), (110).	
Вставьте пропущенное слово.	
Ответ: Миллера	

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

- 1. Основные феноменологические отличия металлов и полупроводников. Общая характеристика полупроводниковых материалов
- 2. Элементы кристаллографии. Решетка Браве. Точечная и пространственная симметрия кристаллов
- 3. Химическая связь в полупроводниках
- 4. Подвижность носителей электрического тока. Уравнение для электропроводности.
- 5. Общий характер температурной зависимости электропроводности металлов и полупроводников (собственная проводимость).
- 6. Механизмы рассеяния носителей. Температурная зависимость подвижности.
- 7. Гальваномагнитные явления. Эффект Холла
- 8. Синтез и очистка п/п материалов. Направленная кристаллизация. Методы роста кристаллов Бриджмена и Чохральского. Теория зонной плавки.
- 9. Зонная структура кристаллов.
- 10. Оптические свойства полупроводников. Спектр поглощения п/п. Край фундаментальной полосы.

- 11. Структура металл полупроводник. Эффект выпрямления тока.
- 12. Полупроводниковые приборы (диод, триод, полупроводниковый лазер)
- 13. Понятие функции распределения и плотности состояний. Статистика Больцмана.
- 14. Поверхностные свойства полупроводников. Р-п переход. Бинарные полупроводники. Общая характеристика.
- 15. Статистика Ферми-Дирака. Уровень Ферми.
- 16. Уровень Ферми в примесных полупроводниках. Зависимость уровня ферми от температуры
- 17. Механизмы рассеяния носителей. Температурная зависимость подвижности.

Пример контрольно-измерительного материала к промежуточной аттестации.

УТВЕРЖДАЮ Заведующий кафедрой общей и неорганической химии Д.х.н. проф. В.Н. Семенов

Направление подготовки / специальность 04.03.01- Химия. Прикладная химия

Дисциплина Химия и физика полупроводников

 Форма обучения
 очное

 Вид контроля
 экзамен

Вид аттестации промежуточная

Контрольно-измерительный материал № 2

- 1. Химическая связь в полупроводниках
- 2. Гальваномагнитные явления. Эффект Холла

Для оценивания результатов обучения на зачете используется — зачтено, не зачтено Соотношение показателей, критериев и шкалы оценивания результатов обучения

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Владение основным материалом курса, полные и правильные ответы на зачете	Пороговый уровень	Зачтено
Отсутствие знаний по вопросу билета на зачете или неверные, значительно искаженные ответы.	_	Не зачтено